您的位置首页百科问答

分子参数的筛选

分子参数的筛选

的有关信息介绍如下:

油藏注水开发过程实际上就是水动力驱使下原油的流动(运移)过程,油藏注水开发是2次采油提高原油产量和采收率常用的工艺。由于在开采过程中,油层岩石与原油之间的相互作用,导致地色层效应,使得原油的组成发生变化。而且在长时间的注水驱油开发过程中,油层水、注入水对原油的驱动过程中,也会选择性地溶解原油的易溶解成分,对原油产生水洗作用。陈祖林、郭建军等曾报道油藏注水开发过程中,水洗作用引起原油组分特征的变化;但这种原油组分变化与原油流动运移效应的关系,缺乏研究与论述,而且很多有关原油水洗作用的研究成果,主要是通过实验模拟得出。

2008~2009年3个批次井口采油样的分析数据表明,原油族组成与类异戊二烯烷烃Pr/Ph(姥植比)、Ph/nC18和Pr/nC17没有明显的变化规律;甾烷的异构化参数C29ααα20S/(20S+20R)和C29αββ/(ααα+αββ)比值,萜烷类参数C3122S/(22S+22R)、Ts/(Ts+Tm)和C29H(降藿烷)/C30藿烷参数以及芳香烃馏分中成熟度参数甲基菲指数 MPIⅠ和MPIⅡ在不同井之间以及各井随注水开发过程中的变化都很小;含氮化合物中经常使用的运移参数苯并咔唑[a]/([a]+[c])变化也很小。值得注意的是,4-甲基二苯并噻吩/1-甲基二苯并噻吩(4-/1-MDBT)与三环萜烷/(三环萜烷+C30藿烷)这两个参数有较大的分布范围,分别为3.21~5.97,0.11~0.25,在不同井之间及同一口井不同时期的变化都比较明显。

按照油藏地球化学的成藏理论,可以根据早期和后期注入石油细微的成熟度差异,来揭示石油的运移和充注的方向与途径,油藏内最接近于烃源灶的位置也就是原油成熟度最高的地点,因此可以标志油藏充注点的位置所在。但在油藏注水开发过程中,原油运移或充注的原始方向可能会被打乱,这些成熟度的微细差异也可能被打破,所以在注水开发一段时间以后,这些成熟度参数所示踪的可能已经不是未开采之前原始的运移和充注路径。但通过一段时间间隔采样分析,这些运移参数的动态变化却可能反映原油的推进方向。

柳北地区沙三3油藏原油具有相同的烃源和相似的充注历史,在这不足6 km2的区块内,从3次井口取样成熟度参数或运移参数的分析看,4-/1-MDBT和三环萜烷/(三环萜烷+C30藿烷)这两个参数有比较大的变化范围,而其他成熟度及运移参数无论同一口井3次采样之间还是不同井之间变化都不大(表6.2),并且4-/1-MDBT和三环萜烷/(三环萜烷+C30藿烷)两个参数之间显示出了良好的正相关性(图6.38)。从图中两条趋势线内各参数(R2=0.70)可见,4-/1-MDBT和三环萜烷/(三环萜烷+C30藿烷)这两个参数在注水开发过程中的变化并不是成熟度的差异引起的,可能更多的是受到其他地质因素的影响。

分子参数的筛选

图6.38 柳北沙三3油藏4-/1-MDBT、三环萜烷/(三环萜烷+C30藿烷)相关图

分子参数的筛选

图6.38 柳北沙三3油藏4-/1-MDBT、三环萜烷/(三环萜烷+C30藿烷)相关图

二苯并噻吩类分子是由1个五元的噻吩环被夹在两个苯环中间所组成的(图6.39),对称性的分子结构使二苯并噻吩类分子的环系具有很高的热稳定性与抗生物降解性,作为分子参数,运用二苯并噻吩类分子来示踪油藏充注途径的原理,可以根据分子氢键形成机理和热稳定性两个方面予以解释。

分子参数的筛选

图6.39 二苯并噻吩与咔唑的分子结构

分子参数的筛选

图6.39 二苯并噻吩与咔唑的分子结构

二苯并噻吩类分子是借助于噻吩环上硫原子上的孤对电子,与周围介质中带正电性的氢原子形成氢键,从而导致二苯并噻吩类分子被与周围形成氢键的介质所吸附,引起的运移分馏效应与烷基咔唑类的分馏效应比较相似,4-烷基二苯并噻吩或6-烷基二苯并噻吩异构体属于屏蔽型分子,氢键相对不易形成。随着运移距离增长,半屏蔽型或屏蔽型分子(4-甲基二苯并噻吩、4,6-二甲基二苯并噻吩)的数量也相对增加,这样导致了4-甲基二苯并噻吩/1-甲基二苯并噻吩、2,4-二甲基二苯并噻吩/1,4-二甲基二苯并噻吩和4,6-二甲基二苯并噻吩/1,4-二甲基二苯并噻吩比值增大。因此无论从分子的热稳定性还是氢键的形成,这两者对于烷基二苯并噻吩类分子的运移分馏效应都具有相互一致的结果。研究区4-/1-甲基二苯并噻吩的变化主要是基于运移分馏效应,而不是成熟度的影响。

目前,柳北沙三3 油藏为注水开发,综合含水平均已经超过了80%,处于高含水期。所以目前采出的原油与大量水密切接触,在这个过程中石油组分必定会受水的影响而有不同程度的变化。Lafargue通过在实验室内模拟石油组分变化受水洗作用的影响,发现分子参数的筛选以上的饱和烃馏分如姥鲛烷、植烷和甾萜类等变化不大,但是一些芳香烃或含硫的化合物,特别是二苯并噻吩类化合物变化较大,这与本次动态监测结果基本一致。在缺少溶解氧的油层内没有生物降解或没有达到使石油裂解的温度的情况下,油藏内原油组分的变化可能主要还是由于地层水的作用引起的。4-甲基二苯并噻吩与1-甲基二苯并噻吩相比(图6.39),1-甲基二苯并噻吩的甲基在1位取代,类似于咔唑类异构体,为硫暴露异构体,其分子骨架上的S原子容易与储层中黏土胶结物或有机质的正电性原子形成氢键,使之被地层吸附,从而产生地色层效应,原油在推进过程中,1-甲基二苯并噻吩不断被吸附。相反,4-甲基二苯并噻吩的甲基在4 位取代,为硫屏蔽异构体,原油在推进过程中相对于1-甲基二苯并噻吩含量的降低趋势,4-甲基二苯并噻吩在原油中相对富集。这些立体异构体效应的差异体现在水中的溶解度上,硫暴露异构体1-甲基二苯并噻吩大于硫屏蔽异构体4-甲基二苯并噻吩,即注入水的影响放大了4-/1-MDBT比值。这样可能造成了在柳北沙三3 油藏面积不足6 km2 较小的区块内4-/1-MDBT比值变化较大。上述结果说明,4-甲基/1-甲基二苯并噻吩这一参数,可以用来作为油藏在注水开发过程中原油顺层或水平推进的示踪参数。而常用的含氮化合物的运移参数苯并咔唑[a]/([a]+[c])变化较小(图6.35),没有体现较大的运移分馏效应,可能与该类化合物受水洗作用影响较小及该区块面积较小所致。

三环萜烷/(三环萜烷+C30藿烷)这一参数的变化也与运移分馏效应有关。相邻同系物(或准同系物,如长侧链对短侧链的环烷烃)都会随分子量的不同而显示出浓度上的差异,如三环二萜烷分子量小但其迁移能力明显地高于五环三萜烷,因此三环萜烷/(三环萜烷+C30藿烷)值会表现出随运移分馏作用的增强而增大,从而使三环萜烷/(三环萜烷+C30藿烷)值与4-/1-MDBT值表现出较好的对应关系。表明了这一参数也可以用来作为油藏在注水开发过程中指示原油推进的动态示踪参数。

鉴于4-甲基/1-甲基二苯并噻吩与三环萜烷/(三环萜烷+C30藿烷)这两个参数间有非常好的相关性(图6.38),所以可以选择其中之一作为原油推进的示踪参数。由于4-/1-甲基二苯并噻吩参数具有较大的离散度和变化范围(表6.2~表6.4),本书采用既可反映成熟度又可反映运移分馏效应的4-甲基/1-甲基二苯并噻吩比值(4-/1-MDBT)这一参数来示踪柳北沙三3油藏生产层内原油的水平推进。